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Abstract

In this study, free out-of-plane vibrations of a circular arch with uniform cross-section are investigated by
taking into account the effects of transverse shear and rotatory inertia due to both flexural and torsional
vibrations. The governing differential equations for out-of-plane vibration of uniform circular beams are
solved exactly by using the initial value method. The solution does not depend on the boundary conditions.
The same solution procedure is also used to obtain the results of other cases in which each effect is
considered individually in order to assess its importance. The frequency coefficients are obtained for the
first five modes of arches with various slenderness ratios and opening angles. The results show that the
flexural and torsional rotatory inertia and shear deformation have very important effects on resonance
frequencies, even if slender shallow arches are considered. It is concluded that the torsional rotatory inertia
effect is the most significant effect to be included in the analysis. A phenomenon known as transition of
modes from torsional into flexural is characterized by the sharp increment in resonance frequencies of
modes that occurs at certain combinations of curvature and length of the arch. The mode transition
phenomenon is shown in figures. Vibration problems for circular beams that have been analysed in the
literature are solved and the results are compared in tables. The comparison shows good agreement
between the results.
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1. Introduction

Arches have long been widely used as structural elements in many mechanical, aerospace and
civil engineering applications such as spring design, brake shoes within drum brakes, tire
dynamics, piping systems, turbo-machinery blades, curved wires in missile guidance floated
gyroscopes, aerospace structures, stiffeners in aircraft structures, arch bridges, curved girder
bridges, long span roof structures and earthquake resistant structures. Hence, the dynamic
behaviour of arches has been of interest to many researchers since the nineteenth century. More
than 600 articles have been summarized in review articles [1–4]. It is noteworthy that the majority
of the papers on this subject are restricted to the planar case where the deformations include the
bending and stretching in the plane of curvature of the arch. Much less research has been focused
on the out-of-plane behaviour of arches.
In general, the in-plane and out-of-plane vibrations of a planar arch are coupled. However,

based on the Bernoulli–Euler hypothesis, if the cross-section of an arch is uniform and doubly
symmetric, i.e., the shear centre and centroid coincide, then the in-plane and out-of-plane
vibrations are uncoupled. However, the out-of-plane bending and torsional responses will still be
coupled.
It is often difficult and sometimes impossible to find a general closed-form solution for the

vibration problem of an arch, since the governing differential equations possess variable
coefficients. The exact solution of the governing equations exists only for a circular beam of
uniform cross-section. The previous studies are based upon the classical theory in which neither
rotatory inertia nor shear deformation are taken into account. Timoshenko beam theory
considers the effects of shear deformation and rotatory inertia due to both flexural and torsional
vibrations and provides a better approximation to the actual arch behaviour. Many techniques
have been considered in the papers on out-of-plane vibrations of arches. The Ritz method with
different types of trial functions has often been applied in determining the natural frequencies of
arches. With the advancement of computer technology and several programs, the finite element
method has been used widely to solve for more general geometry and a number of curved elements
have been developed. If the behaviour of the arch is non-planar, usual finite element or finite
difference model becomes very complicated.
The classical governing equations of in-plane and out-of-plane vibrations of arches are derived

and the analytical solutions of the equations for a circular arch are given in the book by Love [5].
Volterra and Morell [6] used the Rayleigh–Ritz method to determine the lowest natural frequency
of elastic arches with clamped ends. The arches have the centerlines in the forms of a circle, a
cycloid, a catenary and a parabola. The shear deformation effect is neglected. Irie et al. [7]
investigated the steady state out-of-plane response of a Timoshenko arch with internal damping in
response to a sinusoidal point force or moment by using the transfer matrix method. In another
work by Irie et al. [8], the transfer matrix method was used to study the out-of-plane free vibration
of Timoshenko arches of constant radius. The results for clamped–clamped arches with circular
and square cross-sections are given. Wang et al. [9] obtained the dynamic stiffness matrix for an
arch. The effects of shear deformation and rotatory inertia due to bending vibration are included,
but the effect of rotatory inertia due to torsional vibration is neglected. Bickford and Maganty
[10] investigated the out-of-plane vibrations of thick circular rings by considering the effects of
shear deformation and rotatory inertias. In Ref. [11], an analytical model where the dynamic
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stiffness matrix elements allow for inclusion of the full effects of rotatory inertia and shear
deformation is presented and compared with experimental results.
Kawakami et al. [12] presented an approximate method to study both in-plane and out-of-plane

free vibrations of horizontal arches with arbitrary shapes and variable cross-sections. Based on
the Timoshenko theory, Kang et al. [13] applied the differential quadrature method in the
computation of the eigenvalues for the in-plane and out-of-plane vibrations of circular arches.
Howson et al. [14] presented a converging method where the exact member theory in conjunction
with the dynamic stiffness technique is used. The effects of shear deformation and rotatory inertia
due to torsional vibration are included, but the rotatory inertia effect due to bending vibration is
neglected. In the paper by Howson and Jemah [15], a method for finding the exact out-of-plane
frequencies of curved Timeshenko beams is presented. The effects of shear deformation and
rotatory inertia due to both torsional and flexural vibrations are included in the equations. Huang
et al. [16] presented a method for out-of-plane dynamic behaviour of non-circular arches. The
viscous damping and effects of shear deformation and rotatory inertia are considered by using
Laplace transformation. Then, Huang et al. [17] extended the work on uniform arches [16] to
investigate the out-of-plane responses arches with arbitrary shapes and cross-sections. The
dynamic stiffness matrix and equivalent nodal force vector based on the general series solution of
the differential equations are derived. In Ref. [18], the out-of-plane vibrations of non-uniform
circular arches were investigated without considering the effects of shear deformation, warping
and the rotatory inertia due to bending vibration. By introducing two physical parameters to
simplify the analysis, the explicit relations between the flexural and torsional displacements for the
out-of-plane vibrations are derived.
Recently, Rubin and Tufekci [19] investigated small deformation three-dimensional free

vibrations of a circular arch with uniform rectangular cross-section by using different theoretical
approaches. Special emphasis focused on the formulation by using theory of Cosserat point.
Finite element results were also presented and some experiments were conducted to verify the
theoretical and finite element results.
The main purpose of this paper is to present the exact solution to the governing differential

equations of out-of-plane vibrations for a circular arch with uniform cross-section. The effects of
shear deformation and rotatory inertia due to the flexural and torsional vibrations are taken into
account. But the warping deformation of the cross-section is neglected. The initial value method is
used in order to solve the governing differential equations. The same solution procedure, which is
given by Tufekci and Arpaci [20], for in-plane free vibrations of a circular arch with uniform
cross-section, is applied. The solution does not depend on the boundary conditions. The
variations of the frequency coefficients with respect to the opening angle are presented for a
certain slenderness ratio and several boundary conditions. The examples given in the literature are
solved and the results are compared.
For in-plane vibration of arches, a phenomenon of transition of modes from extensional into

inextensional, which occur with increase in beam curvature, has been observed by several authors
[21–23]. The similar phenomenon can also be observed for out-of-plane vibrations of arches. The
transition phenomenon is characterized by the sharp increase in frequencies of modes that occurs
at certain combinations of curvature and length of the arch. This increase in mode frequency is
accompanied by a significant change in the mode shapes. There is still no comprehensive analysis
of the transition phenomenon and there are no proper explanations and methods for predicting
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the frequencies of an arch. This is possibly due to the fact that numerical simulations, commonly
employed for the analyses, provide little analytical insight into the vibrational problem. In this study,
the analysis of the transition phenomenon in vibrational behaviour of a shallow circular arch with
uniform cross-section is also presented by using the exact solution of the governing equations.
2. Analysis

The out-of-plane behaviour of elastic arches (Fig. 1) with account taken of rotatory inertias and
shear deformation is formulated by several authors as

dv

df
þ ROn �

R

GA=kb

Fb ¼ 0

dOn

df
þ Ot �

R

EIn

Mn ¼ 0

dOt

df
� On �

R

GJ
Mt ¼ 0,
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df
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In

A
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df
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where v is the out-of-plane displacement; On and Ot are the rotation angles about the normal and
tangential axes; f is the angular coordinate; R is the radius of curvature of undeformed beam axis;
Fb is the binormal component of internal force; kb is the factor of shear distribution along the
binormal axis; E and G are Young’s and shearing moduli; Mn and Mt are the internal moment
about the normal and tangential axes; m is the mass per unit length; A is the cross-sectional area; In
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Fig. 1. Geometry and the coordinate system of a circular arch.
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is the moment of inertia with respect to the normal axis; Ip is the polar moment of inertia, J is the
torsional constant and o is the angular frequency.
As it is well known, the Coulomb theory of torsion gives the exact solution for a circular shaft.

It is assumed that the cross-sections of the bar remain plane and rotate without any distortion
during twist. In other words, the shearing stress at any point of the cross-section is perpendicular
to the radius r and proportional to the length r and to the angle of twist per unit length of the
shaft. Then, the torsional constant is obtained as the polar moment of inertia of the cross-section.
However, for an arbitrary geometry of cross-section, the torsional moment causes warping of the
cross-section. This effect is deeper than the shear deformation effect. The correct solution of the
problem of torsion of prismatic bars by couples applied at the ends was given by Saint-Venant. In
this theory, the deformation of the bar consists of rotations and warping of the cross-section. The
warping is the same for all cross-sections. If there is no warping, J will be equal to the polar
moment of inertia of the cross-section.
The torsional moment of inertia for a rectangular cross-section is given in Refs. [24,25] as

J ¼
WH3

3
1�

192H

p5W

X1
n¼1

1

ð2n� 1Þ5
tanh

pð2n� 1ÞW

2H

" #
for WXH, (2)

where W and H are the dimensions of the cross-section.
Instead, the approximate formula, which gives extremely good results, can also be used:

J ¼
WH3

3
1� 0:63

H

W
1�

H4

12W 4

� �� �
for WXH. (3)

Some authors used the polar moment of inertia instead of the torsional constant [18,26]. Taking
the polar moment of inertia as the torsional moment of inertia leads to an erroneous conclusion
that the maximum shearing stress occurs at the corner of the rectangular cross-section where the
stress is zero. Yang et al. [27] used the torsional constant in the terms for both torsional stiffness
and rotatory inertia due to torsional vibrations.
Eq. (1) can be written also in matrix form as

dyðfÞ=df ¼ AyðfÞ, (4)
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The solution of this set of equations can be found to be

yðfÞ ¼ eAfy0, (6)

provided that the initial values vector y0 ¼ yðf0Þ at the reference coordinates f ¼ f0 is known.
The term eAf can be expressed exactly by using the procedure given by Tufekci and Arpaci [20].
The initial value vector y0 must be obtained in order to specify the solution vector y(f). The six

elements of the vectors can be found by using six equations obtained from the boundary
conditions at the end points A and B.
For the end A as shown in Fig. 1:

Clamped end : V ð�fAÞ ¼ 0; Onð�fAÞ ¼ 0; Otð�fAÞ ¼ 0:

Free end : Mtð�fAÞ ¼ 0; Mnð�fAÞ ¼ 0; Fbð�fAÞ ¼ 0:
(7)

This yields six simultaneous linear equations in terms of the initial values at reference coordinate
f ¼ f0. Since these six equations are homogeneous, the determinant of the coefficient matrix of
the system must equal to zero in order to get the non-trivial solution. This requirement will give
the natural frequencies. It is also possible to apply this solution procedure to the other cases in
which some effects are neglected. For example, kbR=GA term in Eq. (1) must vanish in order to
neglect the effect of shear deformation.
3. Numerical results and comparisons

The dimensionless frequency coefficients ci ¼ oiR
2f2

t ðm=EInÞ
1=2 are calculated for five different

cases:
Case 1: No effect is considered.
Case 2: All effects are considered.
Case 3: Only shear deformation effect is considered.
Case 4: Only rotatory inertia effect due to bending vibration is considered.
Case 5: Only rotatory inertia effect due to torsonal vibration is considered.
The examples are solved for clamped–clamped, free–free and clamped–free end conditions.

Effects of the opening angle ft and the slenderness ratio l ¼ R=i (where i ¼ ðIn=AÞ1=2 is the radius
of gyration) on the natural frequencies are studied for several boundary conditions. The frequency
coefficients are calculated for the lowest five modes of vibration.
In Fig. 2, the variation of the first frequency coefficient with the opening angle ft is given for a

free-free arch with slenderness ratio l ¼ 50. It can be seen that the results obtained for the cases
are considerably different from each other for small opening angles. The frequency coefficient for
case 2 increases sharply then decreases slightly. The sharp increase in the frequency is due to the
mode transition phenomenon from torsional into flexural. It can be observed near the opening
angle of 901 for this example. The results of different cases become more consistent for larger
opening angles. It can be seen easily in the figure that the rotatory inertia due to torsional
vibration is the most important effect. As it is expected, the curves of different cases become closer
to each other for larger slenderness ratios, and also the value of the opening angle in which the
mode transition phenomenon is observed decreases.
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In Fig. 3, the influence of opening angle on the first frequency coefficient is given for a
clamped–clamped arch with the slenderness ratio l ¼ 50. The curves of different cases are much
more consistent than those for a free-free arch. It shows that this vibration mode is flexural
dominant for all opening angles.
In Fig. 4, the dimensionless frequency for the first mode is given for a clamped–free arch. It is

interesting to note that the dimensionless frequency increases as the opening angle increases, in the
contrary to the other boundary conditions. But this cannot be observed in higher modes. The
results of different cases are very consistent even for a shallow arch.
Fig. 5 shows the fifth frequency coefficient for a clamped–clamped arch. As it can be seen in the

figure, the results of several cases are considerably different even for a deep arch (up to ft ¼ 1501).
It is also concluded from Fig. 5 that the effects of shear deformation and rotatory inertia due to
bending vibration become more important with increasing mode numbers and decreasing opening
angles of arch. The figures for more slender arches or for other boundary conditions are very
similar to those given in this paper and they are not presented here for the brevity.
In Figs. 6–8, the frequency coefficients of the lowest five modes are given for clamped–clamped,

free–free and clamped–free arches with l ¼ 50, respectively. The effects of shear deformation, and
rotatory inertias due to both flexural and torsional vibrations are considered. A sharp increase in
the frequency coefficient which is due to mode transition phenomenon can be seen in these figures.
The mode shapes change from torsional into flexural where the frequency curves approach
each other.
In Table 1, the frequency parameters oR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðEInÞ

p
of a clamped–clamped circular arch are

presented with the parameters provided by Huang et al. [17] and Irie et al. [8]. A circular arch with
opening angle ft ¼ 801 and the slenderness ratio l ¼ 20 is investigated in this example. Huang et
al. [17] used the dynamic stiffness matrix method, while Irie et al. [8] solved the governing
equations by using transfer matrix method. In Table 1, the lowest four natural frequency
parameters of circular uniform arches are compared with those given by Irie et al. [8] and Huang
et al. [17]. The comparison shows that the results are very consistent.
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Tables 2 and 3 show the frequency parameters oR2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðEInÞ

p
obtained for clamped–clamped

circular arches with circular and square cross-sections, respectively. The arches with opening
angles ft ¼ 601, 1201 and 1801 and the slenderness ratios l ¼ 20 and 100 are studied. Poisson’s
ratio is 0.3 and the shear correction factors are kb ¼ 1=0:89 for the circular cross-section and
kb ¼ 1=0:85 for the square cross-section. In these tables, the results obtained in the present study
are compared with those given by Irie et al. [8], Kang et al. [13] and Howson and Jemah [15]. It
can be seen that there is an excellent agreement between all the results for the arches having both
circular and square cross-sections.
E Silva et al. [11] gave an analytical model for the out-of-plane vibration of a circular beam.

They also performed some experiments to verify their results. The results are presented for several
cases in which some effects are included in the analysis. The model of Wang et al. [9] was also used
to solve the problem. In Table 4, the results obtained in the present study by considering the same
cases are compared with those presented by E Silva [11]. The assumptions of the cases are as
follows:

Case A: The effects of shear deformation and rotatory inertia due to torsional vibrations are
considered but the effect of rotatory inertia due to bending vibrations is neglected. This case
corresponds to the model of Wang et al. [9].

Case B: Classical beam theory in which all three effects are neglected.
Case C: Only shear deformation effect is neglected while the rotatory inertia effects due to both

flexural and torsional vibrations are included in the analysis.
Case D: All effects are taken into account.
It is seen that the results are generally in good agreement. But for all the cases, the differences

between the fourth frequencies of both studies are higher than the differences of the first
three modes. It is interesting that the fourth natural frequencies of the model in Wang et al. [9]
(case A) are higher than those obtained in this study, while all frequencies of the first three modes
are lower than the results of this study. For the cases C and D, there are some discrepancies
between some results of both studies, while others are consistent. It is thought that these
discrepancies exist in the modes in which the torsional vibration is dominant. The results obtained
in the present study are better than those presented in Ref. [11], when compared with experimental
data. But there still exist some discrepancies between the theoretical and experimental results for
the fourth mode. The experimental frequency of the arch with ft ¼ 1801 is about 10% higher
than the theoretical results, while experimental results present constantly lower values than
theoretical ones.
Table 1

The frequency parameters oR2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m= EInð Þ

p
for a circular arch with opening angle ft ¼ 801 and slenderness ratio l ¼ 20

Mode Present study Huang et al. [17] Irie et al. [8]

1 3.13528 3.13412 3.134

2 5.02582 5.02223 5.022

3 5.58453 5.58418 5.584

4 6.74026 6.73358 6.734
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Table 2

The frequency parameters oR2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m= EInð Þ

p
for clamped–clamped circular arches with circular cross-sections (shear

correction factor kb ¼ 1=0:89 and Poisson’s ratio n ¼ 0:3)

l f (1) Mode Present study Kang et al. [13] Irie et al. [8] Howson et al. [15]

20 60 1 16.88495 16.885 16.88 16.885

2 39.70036 — 39.70 39.700

3 40.93407 — 40.90 40.934

4 70.58051 — 70.51 70.581

120 1 4.309414 4.3094 4.309 4.3094

2 11.79597 — 11.79 11.796

3 22.51022 — 22.50 22.510

4 23.30273 — 23.30 23.303

180 1 1.790849 1.7908 1.791 1.7908

2 5.032438 — 5.032 5.032

3 10.23228 — 10.23 10.232

4 16.91733 — 16.91 16.917

100 60 1 19.45376 19.454 19.45 19.454

2 54.14767 — 54.14 54.148

3 105.86088 — 105.9 105.86

4 173.15822 — 173.1 173.16

120 1 4.473080 4.4731 4.473 4.4731

2 12.89161 — 12.89 12.892

3 26.08059 — 26.08 26.081

4 43.68398 — 43.68 43.684

180 1 1.818173 1.8182 1.818 1.8182

2 5.241521 — 5.242 5.2415

3 10.988907 — 10.99 10.989

4 18.813360 — 18.81 18.813
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4. Conclusions

In this study, the equations of free out-of-plane vibrations of a circular arch with uniform cross-
section are solved exactly by using the initial value method. The effects of shear deformation and
rotatory inertias due to both flexural and torsional vibrations are included in the equations. The
same solution procedure is employed for the cases in which some of the effects are considered as
well as none. It is obvious that the classical beam theory neglecting all aforementioned effects does
not represent the actual arch behaviour if a shallow arch is considered. The effect of rotatory
inertia due to torsional vibrations is the major effect for a shallow arch, even if it is slender and
lower modes are considered. If the arch is also thick, as it is well known, the effects of shear
deformation and rotatory inertia due to bending vibrations should be taken into account even for
lower modes.
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Table 3

The frequency parameters oR2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m= EInð Þ

p
for clamped–clamped circular arches with square cross-sections (shear

correction factor kb ¼ 1=0:85 and Poisson’s ratio n ¼ 0:3)

l f (1) Mode Present study Kang et al. [13] Irie et al. [8] Howson et al. [15]

20 60 1 16.74397 16.744 16.74 16.743

2 36.94631 — 36.92 36.921

3 40.45051 — 40.45 40.449

4 69.61974 — 69.62 69.618

120 1 4.282547 4.2827 4.282 4.2823

2 11.69060 — 11.69 11.690

3 22.05355 — 22.05 22.045

4 22.38193 — 22.38 22.379

180 1 1.776521 1.7766 1.776 1.7764

2 4.981896 — 4.982 4.9814

3 10.134003 — 10.13 10.133

4 16.76278 — 16.76 16.762

100 60 1 19.40190 19.402 19.40 19.401

2 54.02958 — 54.03 54.029

3 105.64828 — 105.6 105.65

4 172.77355 — 172.8 172.77

120 1 4.451450 4.4516 4.451 4.4512

2 12.82629 — 12.83 12.826

3 25.98937 — 25.99 26.988

4 43.57053 — 43.57 43.570

180 1 1.804340 1.8045 1.804 1.8042

2 5.197995 — 5.198 5.1975

3 10.91819 — 10.92 10.917

4 18.72548 — 18.72 18.725
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The natural frequencies for all modes exhibit sharp increases for shallow arches and then
decrease gradually with an increase in the opening angle. This is due to mode transition
phenomenon which cannot be observed in the classical beam theory. The transition phenomenon
is characterized by the sharp increase in frequencies of modes that occurs at certain combinations
of curvature and length of the arch. This increase in mode frequency is accompanied by a
significant change in the mode shapes.
The behaviours of arches with clamped–clamped and free–free boundary conditions are very

similar. For a clamped–free arch, it is seen that there exists a distinct difference in behaviour of the
arch when compared with other boundary conditions; the fundamental frequency increases
gradually as the opening angle increases for all slenderness ratios. In the other modes, a similar
behaviour with other boundary conditions is observed.
The examples given in the literature are solved and the results are compared with the published

results. Excellent agreement is found between the results. All examples show that the effects of
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Table 4

Comparison of frequencies (Hz) obtained in Ref. [11] using different models

Mode no. f (1) Results of this study Results of E Silva et al. [11]

Case A Case B Case C Case D Case A Case B Case C Case D Exp. results

1 30 786.6738 800.6474 514.7469 513.2655 782.87 796.75 634.21 632.36 —

60 719.0624 730.8058 707.8963 703.0553 715.46 727.2 712.36 707.29 —

90 633.2932 642.6385 617.9104 614.8309 630.2 639.18 623.42 620.25 —

180 402.5242 407.2038 394.434 393.6718 400.2 400.3 395.81 391.05 387.5

270 256.5756 259.112 254.0342 253.7477 255.0 254.2 253.7 250.8 250.5

2 30 1425.554 1474.058 786.9517 779.9234 1418.6 1466.1 786.33 779.6 —

60 1382.723 1428.2 848.4754 845.296 1376.0 1421.2 1053.5 1046.4 —

90 1317.301 1358.46 1072.914 1065.671 1310.7 1351.8 1203.4 1190.2 —

180 1053.206 1080.203 998.8414 991.5031 1047.8 1067.2 1023.4 1007.2 967.6

270 788.136 805.0474 762.2617 759.1717 784.1 792.9 771.19 760.4 747.1

3 30 2508.818 2651.783 1597.856 1565.754 2494.2 2642.5 1605.1 1570.7 —

60 2435.994 2571.177 1612.849 1584.146 2424.8 2562.5 1700.8 1671.2 —

90 2339.53 2464.672 1734.47 1711.729 2328.8 2456.0 2045.6 2022.2 —

180 2002.425 2094.989 1831.355 1804.384 1992.5 2074.1 1927.9 1882.2 1717.5

270 1646.99 1711.597 1551.65 1534.549 1638.2 1690.5 1596.9 1564.2 1487.5

4 30 3572.732 3868.856 1639.586 1637.249 3675.0 3458.5 2162.4 2153.4 —

60 3529.953 3818.441 1753.192 1744.951 3459.3 3550.6 2197.8 2167.4 —

90 3462.539 3739.28 1861.641 1844.976 3451.3 3614.2 2180.2 2136.2 —

180 3155.901 3383.386 2524.19 2489.824 3143.4 3370.4 2864.3 2818.0 2763.0

270 2766.249 2940.697 2510.843 2465.595 2752.0 2910.3 2657.8 2580.0 2460.2
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shear deformation and rotatory inertia due to both flexural and torsional vibrations on the
natural frequencies of stubby beams are substantial. It is also known that these effects become
more important for higher natural frequencies.
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